3#ifndef TETL_CMATH_ATANH_HPP
4#define TETL_CMATH_ATANH_HPP
6#include <etl/_3rd_party/gcem/gcem.hpp>
16[[nodiscard]]
constexpr auto atanh(
float arg)
noexcept ->
float {
return etl::detail::gcem::atanh(
arg); }
17[[nodiscard]]
constexpr auto atanhf(
float arg)
noexcept ->
float {
return etl::detail::gcem::atanh(
arg); }
18[[nodiscard]]
constexpr auto atanh(
double arg)
noexcept ->
double {
return etl::detail::gcem::atanh(
arg); }
19[[nodiscard]]
constexpr auto atanh(
long double arg)
noexcept ->
long double {
return etl::detail::gcem::atanh(
arg); }
20[[nodiscard]]
constexpr auto atanhl(
long double arg)
noexcept ->
long double {
return etl::detail::gcem::atanh(
arg); }
23 return etl::detail::gcem::atanh(
double(
arg));
The concept integral<T> is satisfied if and only if T is an integral type.
Definition integral.hpp:13
constexpr auto atanh(float arg) noexcept -> float
Computes the inverse hyperbolic tangent of arg.
Definition atanh.hpp:16
constexpr auto atanhl(long double arg) noexcept -> long double
Computes the inverse hyperbolic tangent of arg.
Definition atanh.hpp:20
constexpr auto atanhf(float arg) noexcept -> float
Computes the inverse hyperbolic tangent of arg.
Definition atanh.hpp:17
constexpr auto arg(complex< T > const &z) noexcept -> T
Definition arg.hpp:15
Definition adjacent_find.hpp:8