tetl 0.1.0
Embedded Template Library
Loading...
Searching...
No Matches
atanh.hpp
Go to the documentation of this file.
1// SPDX-License-Identifier: BSL-1.0
2
3#ifndef TETL_CMATH_ATANH_HPP
4#define TETL_CMATH_ATANH_HPP
5
6#include <etl/_3rd_party/gcem/gcem.hpp>
8
9namespace etl {
10
13
16[[nodiscard]] constexpr auto atanh(float arg) noexcept -> float { return etl::detail::gcem::atanh(arg); }
17[[nodiscard]] constexpr auto atanhf(float arg) noexcept -> float { return etl::detail::gcem::atanh(arg); }
18[[nodiscard]] constexpr auto atanh(double arg) noexcept -> double { return etl::detail::gcem::atanh(arg); }
19[[nodiscard]] constexpr auto atanh(long double arg) noexcept -> long double { return etl::detail::gcem::atanh(arg); }
20[[nodiscard]] constexpr auto atanhl(long double arg) noexcept -> long double { return etl::detail::gcem::atanh(arg); }
21[[nodiscard]] constexpr auto atanh(integral auto arg) noexcept -> double
22{
23 return etl::detail::gcem::atanh(double(arg));
24}
25
27
28} // namespace etl
29
30#endif // TETL_CMATH_ATANH_HPP
The concept integral<T> is satisfied if and only if T is an integral type.
Definition integral.hpp:13
constexpr auto atanh(float arg) noexcept -> float
Computes the inverse hyperbolic tangent of arg.
Definition atanh.hpp:16
constexpr auto atanhl(long double arg) noexcept -> long double
Computes the inverse hyperbolic tangent of arg.
Definition atanh.hpp:20
constexpr auto atanhf(float arg) noexcept -> float
Computes the inverse hyperbolic tangent of arg.
Definition atanh.hpp:17
constexpr auto arg(complex< T > const &z) noexcept -> T
Definition arg.hpp:15
Definition adjacent_find.hpp:8